Technician Class Course

Session 5

TRANSMITTERS, RECEIVERS AND TRANSCEIVERS

Basic Transmitter Block Diagram

Basic Receiver Block Diagram

Generalized Transceiver Categories

Transceiver Operation	Typical Bands	Typical Modes
Single-band handheld or mobile	VHF or UHF	FM or Digital Voice
Dual-band handheld or mobile	VHF or UHF	FM or Digital Voice, Packet
Multi-band, multi-mode mobile or fixed	HF, VHF and UHF	AM, FM, SSB, CW, Data

"Rig" Vocabulary

- We will now go through some jargon and vocabulary specific to the functions and controls of a transmitter and receiver.
 - This is a way to discuss how to operate a transceiver.
- These controls, though separate, are combined in a transceiver.

- Main tuning dial (both TX and RX):
 - Controls the frequency selection via the Variable Frequency Oscillator (VFO).
 - Could be an actual dial or key pad or programmed channels.
 - Variable frequency step size (tuning rate, resolution).
 - Could have more than one VFO (control more that one frequency at a time).

Typical Controls

http://www.icomamerica.com/en/products/amateur/hf/718/default.aspx

Keypad

Audio Gain (inside) RF Gain (outside)

Main Tuning Knob

- Mode selector (both TX and RX multi-mode rigs).
 - AM/FM/SSB (LSB or USB)
 - CW
 - Data (RTTY)
- Could be automatic based on recognized band plan.

- Microphone controls
 - Gain
 - How loudly you need to talk to be heard.
 - Speech Compressor or Speech Processor
 - Compacting your speech into a narrow amplitude/frequency range to enhance "punch."
 - Too much gain or compression can cause problems.
 - Splatter
 - Over-deviation
 - Over-modulation

Speech Compression Example

http://www.icomamerica.com/en/products/746pro/img5.gif

- Reduce dynamic range
- Increase average power

- Automatic Level Control (ALC).
 - Automatically limits transmitter drive (output level) to prevent problems associated with too much gain or compression.
- Also can control external power amplifier operation.

- Transmitter on/off
 - Push-to-Talk (PTT)
 - Voice-Operated Transmission (VOX)
 - VOX Gain
 - VOX Delay
 - Anti-VOX
 - Key jack

- Microphones (Mic)
 - Hand mics
 - Desk mics
 - Pre-amplified desk mikes
 - Speaker-mics
 - Headsets or boom-sets
 - Internal mikes
- Speak across the mic, not into the mic.

- Morse Keys
 - Straight
 - Semi-automatic (Bug)
 - Electronic keyer, paddle

AF Gain or Volume

 Controls the audio level to the speaker or headphones.

• RF Gain

- Controls the strength of radio signal entering the receiver.
- Used to limit (attenuate) very strong local signals.
- Usually operated in the full-open position.

- Automatic Gain Control (AGC)
 - Automatically limits the incoming signals during signal (voice) peaks.
 - Prevents peaks from capturing the receiver and limiting reception of lower level portions of the incoming signal.
 - Fast setting for CW.
 - Slow settings for SSB and AM.
 - Not used in FM because of the type of signal used in FM.

- Squelch
 - Turns off audio to speaker when signal is not present.
- Used in FM primarily
 - Open allows very weak signals to pass through (along with noise).
 - Tight allows only the strongest signals to pass through.
- Advance the squelch control until the noise just disappears.

Filters

- Band-pass filter
 - Used to narrow the width of signal that is passed.
 - Can attenuate adjacent interference.
- Notch filter
 - Very narrow filter that can be moved over an interfering signal to attenuate it.
- Noise blanker or limiter
 - Limits signal spikes that are frequently associated with random naturally generated noise.

- Reception and Transmission Meter.
 - In transmit, indicates output power or ALC or other functions as selected by switch setting.
- In receive indicates signal strength.
 - − In "S" units S1 through S9 − S9 is strongest.
 - Also have dB over S9 to cover very strong signals.

- Receivers can be limited to ham bands or can cover other parts of the spectrum.
- General coverage receivers cover a wide area of the spectrum and can be used for shortwave listening (SWL).

Metering

Mode and Filter Indication

RADIO SIGNALS AND WAVES

Radio Waves are AC

- You have already learned that in an alternating current (AC) the electrons flow in one direction one moment and then the opposite direction the next moment.
- Radio waves (electromagnetic radiation) are AC waves.
- Radio waves are used to carry the information
 you want to convey to someone else.

Wave Vocabulary

- Before we study radio waves, we need to learn some wave vocabulary.
 - Amplitude
 - Frequency
 - Period
 - Wavelength
 - Harmonics

- E-plane and H-plane
 - E-plane refers to the electric field
 - H-plane refers to the magnetic field
- H-plane is always at right angles to the E-plane
- Polarization is the E-plane orientation <u>relative</u> to the surface of the Earth

 Electric and magnetic fields are at right angles to each other

Wavelength

- The distance a radio wave travels during one cycle.
- One complete change between magnetic and electric fields.

(this is the figure in your book...)

Finding Where You are on the Radio Dial

- There are two ways to tell someone where to meet you on the radio dial (spectrum).
 - Band segment (2 meter simplex)
 - Frequency (e.g., 146.52 MHz)

Radio Frequency (RF) Spectrum

- The RF spectrum is the range of wave frequencies which will leave an antenna and travel through space.
- The RF spectrum is divided into segments of frequencies that basically have unique behavior.

Radio Frequency (RF) Spectrum

